
Sus cálculos no eran abstractos, buscaban lo más práctico aunque no tuvieran la resolución y la reflexión teórica que después alcanzarían losgriegos. Al contrario que a los matemáticos griegos, no les preocupó la resolución teórica ni la reflexión sobre problemas matemáticos (numéricos, aritméticos o geométricos), sino su inmediata aplicación práctica. Pero, sin embargo, fueron precursores. Los más importantes matemáticos griegos viajaron por Egipto y Babilonia aprendiendo de estos pueblos.
- Conocieron los números naturales y los racionales positivos de numerador 1, su aproximación al valor de p=3'16 fue la más acertada en la antigüedad. Resolvían ecuaciones de segundo grado y raíces cuadradas para aplicarlas a los problemas de áreas. Aunque la suma funcionaba bien, el sistema de numeración egipcio presentaba algunas dificultades aritméticas entre las que destaca la práctica imposibilidad de organizarlos para multiplicar. Sin embargo consiguieron que la aritmética fuera su fuerte; la multiplicación y las fracciones no tenían secretos para ellos. La multiplicación se realizaba a partir de duplicaciones y sumas, y en la división utilizaban la multiplicación a la inversa.
- PROBLEMA: ¿Serás capaz de traducir a nuestro sistema de numeración los números egipcios siguientes y los nuestros al sistema egipcio?
El sistema de numeración egipcio, era un sistema decimal (de base 10) por yuxtaposición, así sus números se escribían de la siguiente manera:

- Los egipcios utilizaron las fracciones cuyo numerador es 1 y cuyo denominador es 2, 3, 4,..., y las fracciones 2/3 y 3/4 y con ellas conseguían hacer cálculos fraccionarios de todo tipo. Su notación era la siguiente:
- PROBLEMA: ¿Serás capaz de realizar las siguientes operaciones y escribir el símbolo egipcio que corresponde en los puntos suspensivos?
- Gracias a algunos de los papiros encontrados, entre ellos el de Rhind y el de Moscú, se conoce bastante respecto a las matemáticas de los egipcios. En ellos, se conservan resoluciones de problemas, con su planteamiento, operaciones y hallazgo de solución. El principal texto matemático egipcio que se conoce, el Papiro de Rhind, fue escrito por un escriba (el único personaje que realizaba cálculos en Egipto, al que se le exigía el manejo de la multiplicación) bajo el reinado del Rey Hicso Ekenenre Apopi, hacia el 1600 a. C.
Dominaban perfectamente los triángulos gracias a los anudadores. Los anudadores egipcios hacían nudos igualmente espaciados que servían para medir; fueron los primeros en observar que uniendo con forma de triángulo, cuerdas de ciertas longitudes se obtiene un ángulo recto, también conseguían mediante estos nudos triángulos rectángulos. Pitágoras recogió toda esta experiencia geométrica para su teorema. Es decir, los egipcios ya conocían la relación entre la hipotenusa y los catetos en un triángulo rectángulo. Utilizaban el más tarde se conoció como Teorema de Pitágoras, pero de forma práctica, no sabían demostrarlo.
- Entre las fórmulas que tenían para medir áreas, se pueden citar las de superficie del cuadrado (a partir del triángulo), del rectángulo, del rombo y del trapecio. En cuanto al área del círculo utilizaron una fórmula que daba a p un valor bastante aproximado. En el Papiro de Rhind encontramos:
- Papiro de Rhind: problema 79 (s. XVII a.C.)
- Había una propiedad compuesta por siete casas; cada casa tenía siete gatos; cada gato se comía siete ratones; cada ratón se comía siete granos de cebada; cada grano había producido siete medidas. ¿Cuánto sumaba todo esto?
- Papiro de Ahmes: problema 24 (s. XVII a.C.) Calcular el valor del montón si el montón y un séptimo del montón es igual a 19.
- Otras páginas de internet con información sobre las matemáticas en Egipto:
- Puedes ver las referencias de los materiales que hemos utilizado para construir esta página.
0 comentarios:
Publicar un comentario